

UNIVERSITY OF SASKATCHEWAN College of Agriculture and Bioresources

DEPARTMENT OF ANIMAL AND POULTRY SCIENCE AGBIO.USASK.CA

Do pigs benefit from omega-3 fatty acids?

Denise Beaulieu Assistant Professor Animal & Poultry Science

Outline

Introduction

- What are omega-3 fatty acids?
- Why would we consider augmenting the diet of growing pigs, sows and piglets with omega-3 fatty acids

Experimental results

Conclusions

http://www.phytochemicals.info/plants/flaxseed.php

Omega-3 fatty acids are:

Polyunsaturated Fatty Acids (PUFA)

• PUFA contain more than one double bond

Why supplement the diet of a pig with omega-3 FA's?

 Enrich the pork with omega-3 FA's and thus benefit the consumer

 Allow the pig to take advantage of the physiological benefits of omega-3 FA's

Enriching pork with omega-3 FA's

J Clin Med. 2015 Dec; 4(12): 1999–2011. Published online 2015 Dec 16. doi: <u>10.3390/jcm4121956</u> PMCID: PMC4693156

Pork as a Source of Omega-3 (n-3) Fatty Acids

Michael E.R. Dugan,^{1,*} Payam Vahmani,¹ Tyler D. Turner,² Cletos Mapiye,³ Manuel Juárez,¹ Nuria Prieto,¹ Angela D. Beaulieu,⁴ Ruurd T. Zijlstra,⁵ John F. Patience,⁶ and Jennifer L. Aalhus¹

Important

- The pig is not a cow
 - Tissue (and milk) fat reflects dietary fat
 - 18:3 → 20:5 and 22:6??

Challenges

- Regulatory
- Effects on meat quality
- Consumer acceptance

Why supplement the diet of a pig with omega-3 FA's?

Enrich the pork with omega-3
FA's and thus benefit the consumer

 Allow the pig to take advantage of the physiological benefits of omega-3 FA's

PUFA's and the sow

Background

- Sow mobilizes body fat to meet the energetic demands of lactation
- Hypophagia at farrowing contributes to negative energy balance of the sow
- Excessive loss of body weight affects lactation and reproductive performance
- Evidence that long chain PUFA affects activity of hormone-sensitive lipase, energy mobilization (Tilton et al. 1999) and moreover, differential response to n-6 and n-3 fatty acids for genes affecting energy metabolism in adipose tissue (Papapoulos et al. 2008)

PUFA's and the sow

Objectives

A series of experiments were conducted to determine if supplementation of the sow's diet with omega-3 FA's would:

- Decrease negative energy balance by decreasing tissue mobilization and improving feed intake post-partum
- Improve piglet growth and viability

Determine if the results are dependent on the n6:n3 ratio

Previous experiments had shown that the fatty acid content of sows' milk reflected diet fatty acid content, with slight increases in DHA and EPA when sows when the n6:n3 ratio was 5:1 Eastwood et al. 2014

Experimental Diets - Gestation

	Dietary Treatment Based on Fatty Acid Ratios (n-6 to n-3)				
Ingredient (% as fed)	Control	10:1	5:1	1:1	1:1 Fish
Barley	69.9	72.2	66.5	57.5	70.0
Wheat	9.6	7.0	12.0	19.0	8.9
Corn	-	-	1.5	4.4	-
Flaxseed	-	-	-	5.0	-
Soybean Meal	12.6	11.4	8.3	5.0	12.7
Canola Meal	1.6	1.4	-	-	1.6
Flaxseed Meal	-	1.8	6.0	5.4	-
Tallow	3.5	-	-	-	-
Canola Oil	-	0.7	-	-	-
Corn Oil	-	2.6	2.3	0.4	0.1
Flax Oil	-	-	0.6	0.5	-
Herring Oil	-	-	-	-	3.9

Experimental Diets - Gestation

	Dietary Treatment Based on Fatty Acid Ratios (n-6 to n-3)				
Chemical Analysis	Control	10:1	5:1	1:1	1:1 Fish
Ether Extract (%)	4.5	4.6	4.7	5.0	5.5
Total SFA (g/kg diet)	17.3	8.8	8.3	7.8	10.3
Total PUFA (g/kg diet)	16.5	29.5	30.5	33.0	28.2
Total n-3 (g/kg diet)	1.8	2.9	4.9	14.2	4.8
Total n-6 (g/kg diet)	14.7	29.6	25.7	18.9	23.4
n-6 to n-3 Ratio	8:1	9:1	5:1	1:1	5:1

Total n-3 90% C18:3 n3, 10% 20:5 n3 and 22:6 n3

UNIVERSITY OF SASKATCHEWAN

Eastwood et al. 2014

Results

Results – Cycle 1

	Dietary Treatment					Stati	stics
Production Parameter	Contro I	10:1	5:1	1:1	5:1 Fish	SEM	P <
Average Wean Weight (kg)	8.2 ^{ab}	8.6ª	8.6ª	8.0 ^b	7.8 ^b	0.19	0.02

Results – Cycle 2

		Dietary Treatment					Statistics	
Production Parameter	Control	10:1	5:1	1:1	5:1 Fish	SEM	P <	
Sow ADFI (kg)	7.5 ^a	7.4 ^a	7.6 ^a	7.5 ^a	6.8 ^b	0.20	0.04	
Average Birth Weight (kg)	1.5ª	1.4 ^{ab}	1.5ª	1.4 ^{ab}	1.3 ^b	0.05	0.05	
Total Litter Wean Wt (kg)	88.7ª	88.6ª	90.4ª	83.0 ^{ab}	77.0 ^b	2.88	0.01	
Average Wean Weight (kg)	8.8ª	8.7 ^{ab}	9.2 ^a	8.7 ^{ab}	8.2 ^b	0.21	0.04	

Results – Cycle 2

• Dietary treatment had no effects on:

Parameter	P <
Piglets born	0.84
Colostrum IgA (mg/ml)	0.84
Post-Suckle Serum IgA (mg/ml)	0.96
Colostrum IgG (mg/ml)	0.90
Post-Suckle Serum IgG (mg/ml)	0.93

Summary

- Sows consuming the fish oil diet ate less feed, had reduced piglet birth weights and weaning weights when compared to the other treatment groups
- A 5:1 ratio fed to sows did not affect birth weights or return to estrus intervals; however, a modest effect on litter weaning weights

Eastwood et al. 2014

UNIVERSITY OF

PUFA's and the sow

Background

- Sow mobilizes body fat to meet the energetic demands of lactation (lactational homeorhesis)
- Hypophagia at farrowing contributes to negative energy balance of the sow
- Excessive loss of body weight affects lactation and reproductive performance
- Evidence that long chain PUFA affects activity of hormone-sensitive lipase, energy mobilization (Tilton et al. 1999) and moreover, differential response to n6 and n3 fatty acids for genes affecting energy metabolism in adipose tissue (Papapoulos et al. 2008)

• Specific Objectives:

- To characterize how the n6:n3 ratio in sow diets influences whole body metabolism and milk production by looking at:
 - Milk energy output
 - Piglet growth rate
 - Sow feed intake
 - Adipose tissue mobilization

Adipose Tissue "Responsiveness":

- Utilized similar diets as described previously, 11 months
- Glucose and epinephrine challenges

LACTATION ADFI (kg/d)

BACKFAT THICKNESS (mm)

PRE-CHALLENGE BLOOD

	10:1 P	1:1 P	SEM	P <
[NEFA], uM	93.27	240.02	74.152	0.16
[Glycerol], mg/dl	0.40	0.81	0.214	0.20
Fasted [glucose], mg/dl	64.67	63.54	5.707	0.88
[C-Peptide], ng/ml	0.30	0.25	0.070	0.58

EPINEPHRINE CHALLENGE - GLYCEROL

EPINEPHRINE CHALLENGE - NEFA

1:1 sows had a higher NEFA background

GLUCOSE CHALLENGE

- •Glucose and C-Peptide concentrations increased in response to glucose infusion
- •No dietary effects as sows on both diets responded similarly (P > 0.1)

	10:1 P	1:1 P	SEM	P Value
Day 5 Leptin, ng/ml HE	3.24	3.27	0.279	0.93
Day 15 Leptin, ng/ml HE	3.24	3.82	0.210	0.07

• Day 15 leptin correlated with:

- NEFA; r = 0.46, P = 0.07
- Glycerol; r = 0.45, P = 0.1
- Weaning BF thickness; r = 0.55, P = 0.03

CONCLUSIONS

- Comparable piglet growth, reduced sow feed intake, increased plasma NEFA and reduced response to the epinephrine challenge implies that sows consuming the 1:1 n6:n3 FA ratio were mobilizing body reserves to supply nutrients in their milk.
- Reducing the dietary n6:n3 FA ratio below an optimal point puts sows in a state of increased body fat mobilization, which in turn would have negative impacts on sow body condition and longevity
- We hypothesized that reducing the n6:n3 FA ratio in sow diets would alleviate hypophagia post farrowing and improve milk production (energy output)
 - Feed intake was highest in the 5:1 fed sows, negative effects below that
 - Piglet growth and milk production were unaffected

Feeding the sow diets with varying n6:n3 ratios had no effect on piglet ADG during lactation

- •However, other work at PSC and in the literature provides conflicting results
- •What about the newly weaned piglet?

Weaning

- Stressful!!
 - Environmental
 - Social
 - Nutritional
- Post-weaning growth lag

- Maximize nursery performance
 - Growth
 - Feed intake
 - Health

Using diets devoid of in-feed antibiotics

Impact on piglet

- Reducing plant based n6:n3 ratios in pig diets can:
 - Improve piglet growth prior to weaning
 - Increase conversion of ALA into EPA
 - Alter febrile and cytokine responses in piglets challenged with LPS
- A literature review reveals conflicting results:
 - Positive, negative and no change
 - Ratio often not accounted for, diets high in n6

Does the anti-inflammatory response to n3 fatty acids depend on the ratio with n6?

- Newly weaned piglets fed diets varying in n6:n3 ratios and amounts
- •Challenged with LPS

Stage 2 Diets

	Control	3.5/10	5/10	3.5/5	3.5/1
Fat content, %	3.5	3.5	5	3.5	3.5
n6:n3	10:1	10:1	10:1	5:1	1:1
Total n3, g/kg	2.4	2.7	3.4	5.0	14.0
Total n6, g/kg	1.8	2.8	3.5	2.7	17.0
Total PUFA, g/kg	20.0	30.5	38.0	31.5	30.1
n6:n3 Ratio	7.32	10.30	10.23	5.36	1.22

Febrile Response

BUN and Cytokines

- Pigs challenged with LPS had elevated BUN and serum cytokine concentrations relative to saline pigs (P > 0.05)
- No dietary effects on BUN, IL-1 β , IL-6 or TNF α
- Serum IL-8

•Unaffected by increasing dietary n3 (with constant ratio)

•In LPS challenged pigs

•Decreased with decreasing n6:n3 ratio

Animal Performance

- Saturated vs. unsaturated diets
 - No effect on ADG, ADFI or G:F
- Increasing n3 amount with constant 10:1 ratio
 - No effect on ADG, ADFI or G:F
- Decreasing n6:n3 ratio with constant 3.5% total fat
 - No effect on ADG or G:F

BW and Carcass Composition

Jowl Fatty Acid Profiles

- Increasing the amount of dietary fat (with constant ratio) did not affect the FA profile
- Reducing the n6:n3 ratio (with constant fat level):
 - Increased n3 overall (including ALA and EPA)
 - Decreased n6 overall (including LA and AA)
 - DHA unaffected

ω-6:ω-3 ratio			
Diet	IwoL		
10.30	10.38		
5.36	6.59		
1.22	2.17		

Summary and Conclusions

- Changing the dietary ω -6 to ω -3 fatty acid ratio impacts nursery pig inflammatory responses more than increasing ω -3 intake alone.
- Reducing the dietary ω -6: ω -3 ratio in nursery pigs may reduce their overall inflammatory response during weaning.
 - This may explain why pigs fed the same diets in our previous trial had improved protein deposition when fed diets with lower ω -6: ω -3 ratios
 - •
 - The pig would require less protein to be diverted to the immune system for synthesis of inflammatory proteins.

Overall conclusion and future research

- There is evidence that reducing the n6:n3 fatty acid ratio improves protein deposition in growing pigs, possibly by reducing inflammatory response
- Further research is required to determine if this is due to the conversion of C18:3 n3 to C20:5 n3 or intake of small amounts of C20:5 n3

Acknowledgements

Laura Eastwood Staff and animal technicians at PSC *Especially* Raelene Petracek, Doug Gillis and Janice Shea

Saskatchewan Ministry of Agriculture Agriculture & Food Council of Alberta Western Grains Research Foundation National Pork Board, Pork Checkoff O & T Farms Ltd. Vandeputte Group

FADS1 and FADS2

• No effect of altering ratio, amount or type of fat on FADS1 or FADS2 enzyme expression

Diet Digestibility

- No effect of altering fat type or fat amount on DM, N or crude fat digestibility
- Tendency for increased DM digestibility with decreasing ω-6:ω-3 ratio

ACKNOWLEDGEMENTS

Results

Stress and the Immune System

- Produced by monocytes and macrophages in response to immune challenges
 - IL-1, IL-6, IL-8, TNFα, etc
- Function influenced by PUFA's via alterations to
 - intracellular signaling pathways
 - transcription factor activity
 - gene expression
- Cytokine overproduction can lead to
 - muscle breakdown
 - reduced protein synthesis
 - diversion of nutrients to the formation of more immune cells
 - Possibly affecting growth, performance and overall profit

Summary

- Animal performance (ADG, ADFI, G:F) was unaffected by dietary treatment.
- LPS challenged pigs had reduced ADG and ADFI, elevated rectal temperatures and increased BUN and serum cytokine concentrations relative to the saline injected pigs.
- Regardless of challenge, serum IL-8 concentrations decreased when pigs were fed diets with decreasing ω -6: ω -3 ratios. Altering the ω -3 amount had no effect.
- When total fat was held constant, IL-8 responses to the LPS challenge were lower in pigs fed the 1:1 ratio diet relative to those consuming the 10:1 diet, and was similar to that of saline injected pigs regardless of diet.